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SUMMARY

Aging is associated with deficits in the ability to
ignore distractions, which has not yet been remedi-
ated by any neurotherapeutic approach. Here, in
parallel auditory experiments with older rats and
humans, we evaluated a targeted cognitive training
approach that adaptively manipulated distractor
challenge. Training resulted in enhanced discrimina-
tion abilities in the setting of irrelevant information in
both species that was driven by selectively dimin-
ished distraction-related errors. Neural responses
to distractors in auditory cortex were selectively
reduced in both species, mimicking the behavioral
effects. Sensory receptive fields in trained rats
exhibited improved spectral and spatial selectivity.
Frontal theta measures of top-down engagement
with distractors were selectively restrained in trained
humans. Finally, training gains generalized to
group and individual level benefits in aspects of
working memory and sustained attention. Thus, we
demonstrate converging cross-species evidence
for training-induced selective plasticity of distractor
processing at multiple neural scales, benefitting dis-
tractor suppression and cognitive control.

INTRODUCTION

Aging is associated with deficits in cognitive control that span

multiple functional domains, including perception, attention,

working memory, long-termmemory, and action (Craik and Salt-

house, 2000; Gazzaley, 2013). A common factor underlying

these impairments is an age-related deficit in the suppression

of task-irrelevant distracting information, which in turn degrades

achievement of task-relevant goals (Hasher et al., 1999; Gazza-

ley et al., 2005; Gazzaley, 2013; Wais and Gazzaley, 2014).

Distractibility is defined here as the inability to sustain focus on

goal-relevant target information due to attending and/or errone-

ously responding to goal-irrelevant stimuli (distractors) as if they

were targets. The detrimental impact of distractibility on cogni-

tion in older adults penetrates even basic daily life activities

(Strayer and Drews, 2004; Bock, 2008), to the extent that this
N

impairment has become a hallmark of cognitive aging; notably

when it occurs in conjunction with other age-related changes,

such as diminished processing speed and sensory deficits (Salt-

house, 2000; Jackson and Owsley, 2003; Gazzaley et al., 2008;

Frisina, 2009).

There have been many cognitive training studies in recent

years that have attempted to delay or reverse age-related cogni-

tive decline (Mahncke et al., 2006; Ball et al., 2007; Smith et al.,

2009; Anderson et al., 2013; Wolinsky et al., 2013). Reinforce-

ment-driven operant conditioning forms the basis of most of

these training approaches and has been shown to engender

behavioral improvements as well as remediative neural changes

(Berry et al., 2010; Engvig et al., 2012; Gajewski and Falkenstein,

2012; Anguera et al., 2013). However, despite these efforts, this

training approach has not translated to reduced distractibility in

older adults (Berry et al., 2010; Buitenweg et al., 2012) or in any

other population that exhibits similar suppression deficits (e.g.,

children; Stevens et al., 2008). Deficits in distractor suppression

also extend to older rats, and a recent operant training study was

found to be highly successful in recovering more than 20 age-

related cortical processing deficits, yet the distractor suppres-

sion deficit remained unaltered (de Villers-Sidani et al., 2010).

We hypothesized that effective neurological remediation of

distractibility requires a training approach specifically directed

at this deficit. In prior studies that failed to remediate distracti-

bility, individuals were trained to discriminate progressively

more challenging task-relevant target stimuli, but not to manage

more challenging distractors. These studies, performed both in

older humans (Berry et al., 2010; Mishra et al., 2014) and rats

(de Villers-Sidani et al., 2010), show robust neural enhancement

of relevant information, but find no impact on distractor suppres-

sion. This selectivity is expected, as supported by neuroscience

evidence showing that neural enhancement and suppression

have distinct neural networks (Chadick and Gazzaley, 2011)

and are differentially affected in aging (Gazzaley et al., 2005,

2008; Clapp and Gazzaley, 2012; Chadick et al., 2014).

Motivated by this literature, the current study assessed an

adaptive training approach that immersed older trainees in a

task that involved progressively more challenging distractors,

with the goal of selectively improving neural and behavioral

distractor suppression (adaptive distractor training, ADT). The

training used auditory tones at various frequencies as targets

and distractors, and was evaluated in parallel experiments in

older adults of two species—rats and humans. Trainees were

presented with three successive tone frequencies on every trial,
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Figure 1. Training Design and Behavioral Results

(A) Overview of an example adaptive distractor training trial. Humans and rats were rewarded to discriminate a single target tone amid distractors in a sequence of

three tones. Humans obtained a game-based reward on each trial, unveil of a section of background image, and rats received a food reward. The task was

performance adaptive as the distractor frequency range moved closer to the target frequency on successful discriminations.

(B) Average distractor-target frequency difference as a function of training session number. The ‘‘0’’ time point in humans corresponds to their T1 assessment.

(C) Average proportion of distractor false positives (incorrect discrimination of distractors as targets over the total number of distractors) at first assessment (T1)

and at end of training (T2).

(D) Average proportion of target hits (correct discrimination of targets over the total number of targets) at T1 and T2.

Error bars represent SEM.
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any one of which could be a target; there was only one unique

target frequency in each training block that occurred infrequently

(on 20% of trials), while all other stimuli were distractors. Both

rats and humans implicitly learned to identify the target tone in

each block through reinforcement feedback, and then had to

continue to correctly identify that target tone amid progressively

more challenging distractor frequencies (Figure 1A). Thus, the

main feature of the training approach was that task difficulty

was adaptively modified by adjusting the distractor tone fre-

quencies relative to the target based on performance in the pre-

ceding trial. Using adaptive algorithms, distractor frequencies

were progressively made more similar to the target after correct

discriminations ormore dissimilar after incorrect discriminations,

while the target frequency was kept constant.

The underlying neurophysiological mechanisms of training

effects were evaluated in aged rats using single-unit and multi-

unit recordings in the auditory cortex and in older humans

using high-density electroencephalography (EEG). Recordings
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in anesthetized trained animals provided a measure of sensory

cortex plasticity at single neuron resolution in the absence of

cognitive control. Neuronal distractor suppression was evalu-

ated under anesthesia in a classic auditory oddball sequence

paradigm inwhich deviant ‘‘oddball’’ tones occurred infrequently

in a background of fixed frequency distractor tones (de Villers-Si-

dani et al., 2010). This evaluation complemented EEG-based

neural population recordings in awake humans, which probed

sensory plasticity in early event-related potential (ERP) re-

sponses to distractors versus targets. In humans, we further

assessed plasticity of top-down prefrontal neural circuits and

prefrontal-sensory communication. Theta frequency band oscil-

lations have been evidenced as a mechanism of top-down

cognitive control (Cavanagh and Frank, 2014), which has also

been shown to be modulatable in older adults with video

game-based cognitive training (Anguera et al., 2013). Hence,

we investigated whether theta spectral power and theta

phase locking across frontal and sensory electrode sites were
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modulated by our distractor training, and importantly whether we

observed differential modulation of theta signals elicited to tar-

gets versus distractors. Finally, we assayed generalization of

adaptive distractor training benefits in humans using three stan-

dard tests of cognitive control to probe working memory span,

sustained attention, and impact of interference on delayed-

recognition working memory.

We present our findings in comparison to untrained control

groups in both species as Experiment 1. In addition, to confirm

the specificity of our findings to adaptive distractor training, we

subsequently performed Experiment 2 where we introduce

adaptive target training (ATT) in humans. The ATT procedure

was matched in its range of training stimuli as well as adaptive

challenge parameters to ADT, so that these two training groups

experienced similar motivation, engagement, challenge, and

level progressions throughout training. The sole difference was

that the adaptive mechanics were focused on progressively

more challenging distractors amid fixed targets in ADT (Experi-

ment 1), and on more challenging targets amid fixed distractors

in ATT (Experiment 2). Thus, in Experiment 2, we investigated

whether ATT in comparison to the untrained control group,

would confer the same neuroplastic changes to distractor pro-

cessing as ADT in Experiment 1. Together Experiments 1 and

2 allowed us to understand how adaptive training, customized

to each individual’s performance capacities and focused on spe-

cific neural processes, can be used to achieve selective and

corrective tuning of a deficient neural process. Finally, in Exper-

iment 3, we compared behavioral outcomes in older adult rats/

humans to single session performance of younger adults to char-

acterize the extent of training-related benefits in aging.

RESULTS

Experiment 1
Behavioral Performance

The ADT program, termed ‘‘Beep Seeker,’’ was identical for both

older rats and humans. It involved the presentation of three audi-

tory tone stimuli per trial (Figure 1A). All presented tones had the

same intensity and duration but different frequencies. If the

target tone frequency specific for that training block was identi-

fied in the presented tone triplet, human participants responded

with a ‘‘yes’’ button response, while rats made a ‘‘go’’ reaching

response. Correct responses in human were rewarded with a

score increase and unveil of a background image section, and

rats obtained a food reward. Training was adaptive to the perfor-

mance on each trial, with the mean frequency range distance (in

octaves) of the distractors relative to the constant target fre-

quency as the adaptive parameter for both rats and humans.

ADT was implemented in both older rats (n = 10) and humans

(n = 16) over 36 training block sessions, each block utilizing

a distinct target frequency. Humans trained at home and

completed their training in twelve 30-minute sessions (three

training blocks per session) over 4–6 weeks.

Training resulted in significant improvement in the successful

discrimination of targets in the setting of distractors, with a

48% and 33% improvement in rats and humans, respectively

(Figure 1B). This translated to a pre- to posttraining improvement

in octave resolution (the minimal frequency difference between
N

the target and a distractor tone that can be reliably detected)

of 0.8 ± 0.13 (p = 0.003, effect size Cohen’s d = 1.29) in rats

and of 0.38 ± 0.1 (p = 0.008, d = 1.00) in humans. More detailed

analyses showed that this improved discrimination ability was

driven by a significant decrease in the proportion of incorrect dis-

tractor responses, or false-positive results, which was reduced

by 55% and 33% from the onset of training in rats and human,

respectively (Figure 1C, false-positive proportion change in

rats: 0.27 ± 0.11, p = 0.03, d = 0.79, in humans: 0.06 ± 0.03,

p = 0.03, d = 0.59). The target hit rate remained constant

throughout training at 58% and 40% on average in rats and hu-

mans, respectively (Figure 1D, hit proportion change in rats:

0.06 ± 0.1, p = 0.65, in humans: 0.009 ± 0.06, p = 0.89).

In older humans we also assessed performance in an un-

trained control group (UT, n = 15). On the‘target amid distractors

ADT task, octave resolution for UT did not change significantly in

repeat assessments performed 4–6 weeks apart, averaging at

1.2 ± 0.08 octaves across T1 and T2 (change p = 0.46). The se-

lective improvement in octave resolution in the ADT group was

confirmed as a significant group (ADT versus UT) by session

(T1 versus T2) interaction (F[1,29] = 7.16, p = 0.01; Figure S1A

available online). Furthermore, in the UT group, there was no sig-

nificant change in distractor false-positive results across ses-

sions (p = 0.12), whereas this metric showed selective reduction

in the ADT group (group3 session: F[1,29] = 6.64, p = 0.02; Fig-

ure S1B). Finally, target hits significantly declined at T2 relative

to T1 in the UT group (p = 0.005); whereas this metric did

not change in the ADT group, again yielding a group 3 session

interaction (F[1,29] = 5.14, p = 0.03; Figure S1C). Overall, the

behavioral evidence suggests that diminished distractibility, as

reflected by selectively reduced false-positive results after

training in the ADT group, was the basis of the improved target

resolution amid distractors. We next assessed the neural basis

of this effect in both species.

Recurrent Distractor Suppression in A1 Neurons of

Aged Rats

We used a classic auditory ‘oddball’ sequence paradigm to

assess the effect of training on suppression of distracting sounds

in trained rat auditory cortex A1 compared to the cortex of un-

trained rats. While A1 neurons of healthy anesthetized younger

rats exhibit significant response suppression to repetitive distrac-

tions, resulting in increased contrast for novel deviant stimuli (Ula-

novsky et al., 2003, 2004), this bottom-up process has been

shown to be consistently deficient in aged rats (de Villers-Sidani

et al., 2010). Given this evidence, the oddball paradigm was cho-

sen over other sensory discrimination tasks. To evaluate if ADT

altered distractor response characteristics, anesthetized older

rats were presented a sequence of high probability recurring

pure tone distractors with a deviant oddball tone occurring

randomly with a 10% probability. These stimuli sequences were

identical to those previously used to document age-related A1

distractor processing impairments in rats (de Villers-Sidani et al.,

2010; de Villers-Sidani and Merzenich, 2011; Kamal et al., 2013).

The primary difference in A1 neuronal responses in trained

older animals (ADT), as compared to the same recordings in un-

trained older animals (UT), was significantly greater suppression

of background distractors (Figure 2, mean normalized response

asymptote to distracting tones, UT versus ADT: 0.30 ± 0.009
euron 84, 1091–1103, December 3, 2014 ª2014 Elsevier Inc. 1093



Figure 2. Distractor Suppression in the Rat

A1 Cortex after Training

(A) Representative normalized responses of one

individual A1 neuron to classic ‘‘oddball’’ tone se-

quences in untrained and trained rats relative to

tone position in the sequence. Note how re-

sponses are progressively suppressed as the

sequence progresses. The green horizontal lines

represent the response asymptote of the sample

neuron to the oddball and repeating distractor

tones.

(B) Average values of the asymptotes to oddball

and distractor tones in the UT and ADT groups.

(C) Probability histograms for the values of the

asymptotes to distractor tones in the UT and ADT

groups. UT neurons recorded, 198; T neurons re-

corded, 111. Error bars represent SEM. *p < 0.05,

**p < 0.01.
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versus 0.19 ± 0.008, p < 0.001). Training had no significant

impact on the average magnitude of the responses to the odd-

balls (p = 0.4), paralleling the selective behavioral effect of

training on distractor performance. Overall, this stronger and se-

lective neural suppression resulted in a 45% increase in the

average cell-by-cell oddball-to-distractor response difference

in trained versus untrained older rats (Figure 2B, UT versus

ADT: p = 0.002, d = 0.78). Training also selectively reduced the

response variability of A1 neurons to recurring distracting tones

(mean coefficient of variation of normalized spike rate, UT versus

T: 0.21 ± 0.02 versus 0.18 ± 0.04, p = 0.02), but not to oddballs

(p = 0.7).

Training-Induced Changes in A1 Response Selectivity of

Aged Rats

In older rats, in addition to deficits in distractor suppression, A1

tuning curves are broader (i.e., less frequency selective) and the

normally smooth A1 frequency representation gradient, also

known as the tonotopic axis, becomes disorganized (Mendelson

and Ricketts, 2001; Turner et al., 2005; de Villers-Sidani et al.,

2010). Broader tuning curves lead to wider stimulus-induced

cortical activation, making sensory discrimination purely based

on spatial activation of the cortex less reliable (Recanzone

et al., 1993, 1999). We examined the impact of training on A1

response selectivity bymeasuring A1 neuronal tuning bandwidth

at the sound intensity of the training (60 dB) and at 20 dB above

threshold (BW20), and the degree of receptive field overlap (RF

overlap index, RFOI) between closer and more distant neurons

on the A1map (Figure 3). The RFOI computes the degree of over-

lap between two receptive fields (RFs) for all frequency-intensity

combinations used to build each frequency-intensity tuning
1094 Neuron 84, 1091–1103, December 3, 2014 ª2014 Elsevier Inc.
curve. It thus provides additional insight

on the extent to which A1 neuron pairs

might be differently tuned to the range of

presented frequency-intensity combina-

tions. A lower RFOI implies less over-

lap. Bandwidth measurements and RFOI

were obtained from a sample of the entire

A1 field in both trained (n = 10) and un-

trained (n = 10) animals.
Adaptive distractor training resulted in a 37% decrease in

bandwidth at training sound intensity and 31% decrease in

BW20 (p = 0.002 and p = 0.004 respectively), which was uniform

across the range of A1 neuronal characteristic frequencies (CF

bins of 2.5, 5, 10, 20 kHz, p = 0.3; Figures 3B and 3C). Training

also globally reduced the RFOI for A1 neuron pairs (Figure 3A,

bottom row). While this effect was significant for pairs separated

by relatively short distances (<0.75 mm, p = 0.02), training-

induced RFOI reduction was significantly more pronounced for

longer interneuronal distances in trained relative to untrained an-

imals (>0.75 mm, p = 0.0002, Figure 3D). These results indicate

that not only did A1 neurons in trained older rats have narrower,

more specific receptive fields, but they also had improved spatial

resolution compared to A1 neurons in untrained animals.

Attenuated Distractor Processing in Human Auditory

ERP Responses

Aneural assessment version of theADTwas used to record ERPs

elicited by the distractor and target tone stimuli at time points, T1

and T2, preceding and following training in older humans. Partic-

ipants in the UT control group underwent repeat testing to eval-

uate practice effects on this assessment. The distractor fre-

quency range proximity to target stimuli was adaptively

modulated at the T1 neural assessment, same as in ADT. The

T1 assessment consisted of five blocks of 150 trials each with a

distinct frequency target tone in each block, set at 0.6 kHz, 2

kHz, 0.89 kHz, 1.34 kHz, and 0.4 kHz for all participants. These

specific tone targets during assessment were never assigned

as targets within training. At T1, task difficulty was adaptively

modified on each trial by moving the distractor frequency range,

spanning 0.2–4 kHz, closer to (or further from) the target within



Figure 3. Training-Induced Changes in Rat

A1 Frequency Representation

(A) Top row, representative A1 characteristic-fre-

quency (CF) maps from the UT and ADT groups.

The numbers ‘‘1’’ and ‘‘2’’ indicate the location of

the neural receptive fields shown in (B) and used as

reference to reconstruct the receptive field overlap

maps (third row of A1maps).Middle, A1maps from

the same animals showing the representation of

tuning curve width at 60 dB SPL (training sound

intensity level) and bottom, receptive field (RF)

overlap relative to the recording site shown by the

numeric 1 (UT) and 2 (ADT).

(B) Representative cortical receptive fields from

the CF maps shown in (A).

(C) Average tuning bandwidth at 60 dB (SPL)

values for the entire neuron population recorded in

each group. Scale bar represents 1 mm; D, dorsal;

C, caudal; R, rostral; V, ventral. UT neurons re-

corded, 345; ADT neurons recorded, 321. Error

bars represent SEM. **p < 0.01: t test.

(D) Average RF overlap for A1 neuron pairs at short

and long interneuronal distances.
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a ±2.0 to ±0.1 octaves range based on the participant’s discrim-

ination performance. Similar to the training, stimuli were pre-

sented as tone triplets in each trial with 20% target occurrence

probability across all trials. Notably at T2, stimuli progressions

were yoked to T1 to measure neural response modulations for

the same set of physical stimuli at T1 and T2 in each participant.

Overall, the large variety of constantly changing distractor fre-

quencies used in this paradigm provided a much more engaging

and challenging assessment in awake humans, in contrast to the

oddball assessment in anesthetized rats thatmeasured target re-

sponses amid a background of repetitive distractors.

Early auditory processing in the ADT group showed a signifi-

cant reduction in the neural response to distractors at 150–

160 ms latencies (Figure 4A). A group (ADT versus UT)3 session

(T1 versus T2) 3 stimulus type (distractor versus target) ANOVA

revealed a significant three-way interaction (F[1,29] = 5.06, p =

0.03). This interaction was further parsed in separate two-way

session 3 stimulus type ANOVAs in the ADT and UT groups,

revealing significance only in the ADT group (F[1,15] = 7.79,

p = 0.01, UT: p = 0.36). Post-hoc t tests showed the exclusivity

of this result to distractor processing in the ADT group (T1 versus

T2: distractors: p = 0.03, d = 0.46; targets: p = 0.85). As a cross-
Neuron 84, 1091–1103, D
check, a two-way group x session inter-

action comparing distractor stimuli in the

ADT and UT group also yielded a signifi-

cant interaction (F[1,29] = 4.10, p =

0.05). The group 3 session interaction

for target stimuli was not significant (p =

0.74).

Furthermore, this reduction in distrac-

tor early ERP processing in the neural

assessment in the ADT group significantly

correlated with their improved octave res-

olution during training (r(14) = 0.5, p =

0.048; Figure 4B); smaller distractor ERP
responses at T2 correlated with smaller target versus distractor

octave differences that could be resolved posttraining.

The neural generators of the distractor elicited neural res-

ponse at 150–160 ms localized to temporal cortex in the vicinity

of the superior temporal gyrus and auditory pitch processing

area BA 22 (MNI coordinates of the source cluster peak: +55,

�29, +3mm). These results suggest similar sensory loci of neural

modulation, around auditory cortex for both humans and rats.

Furthermore, these results demonstrate the same plasticity

mechanism of selectively reduced responses to distractors

observed at multiple scales—the level of single neurons in rats

and population neural activity in humans.

Training-Induced Changes in Top-Down Distractor

Processing in Humans

Frontal theta (4–8 Hz) oscillations have been evidenced as an

EEG marker of cognitive control and associated with interfer-

ence resolution (Cavanagh and Frank, 2014; Anguera et al.,

2013). We evaluated early event-related frontal theta (50–

150 ms poststimulus onset) in the neural assessment version

of the ADT task in a group (ADT versus UT)3 session (T1 versus

T2) 3 stimulus type (distractor versus target) ANOVA. A sig-

nificant three-way interaction was observed (F[1,29] = 8.82,
ecember 3, 2014 ª2014 Elsevier Inc. 1095



Figure 4. Training-Induced Changes in Human Distractor Neural Processing

(A) Processing at 150–160mswas significantly reduced at assessment T2 versus T1 for distractors in the ADT group. Positive deflections plotted below horizontal

axis.

(B) The change in 150–160 ms distractor neural processing correlated with the octave resolution improvement observed through training.

(C) Current source estimates for the 150–160 ms modulation localized to auditory processing cortices. *p < 0.05: t test.

Neuron

Neuroplasticity Underlying Distractor Training
p = 0.006), which was further parsed in separate two-way ses-

sion x stimulus type ANOVAs in the ADT and UT groups. The

2-way interaction was only significant in the ADT group, suggest-

ing differential modulation of target versus distractor processing

in this group but not in the UT group (ADT: F[1,15] = 15.22, p =

0.001, UT: p = 0.24). Post-hoc t tests showed that ADT individ-

uals selectively increased their target-related frontal theta post-

training (p = 0.007, d = 0.56) but not distractor theta (p = 0.28)

(Figure 5A).

Although the ADT group did not elicit a significant mean

change in frontal theta to distractors, we investigated if the indi-

vidual differences in this measure may relate to the change in

auditory event-related distractor processing at 150–160 ms.

We found a positive correlation between these measures such

that ADT individuals who restrained frontal theta more also

showed more reduced sensory distractor ERPs posttraining

(r(14) = 0.66, p = 0.005; Figure 5B).

The neural generators of the early frontal theta power signal

were analyzed by distributedminimum-norm source localization.

The peak source cluster localized in themiddle frontal gyrus (Fig-

ure 5C, MNI coordinates: +46, �1, +44 mm), in proximity to the

inferior frontal junction, which is a known prefrontal site involved

in cognitive control and suppression of distracting information

(Gazzaley et al., 2007; van den Wildenberg et al., 2010; Zanto

et al., 2010, 2011). The localization of the theta signal to a pre-
1096 Neuron 84, 1091–1103, December 3, 2014 ª2014 Elsevier Inc.
frontal site further showed that it was a unique signal source

amid auditory event-related activity, which often exhibits frontal

voltage topography but with dipole sources in temporal auditory

cortices (Woods, 1995).

Finally, we analyzed frontal-sensory phase coherence in the

theta range between peak frontal theta site (FCz) and peak

temporo-lateral site at which auditory distractor ERP process-

ing showed maximal modulation (P6). At 50–150 ms latencies

in the upper theta range (6–8 Hz), T2 versus T1 frontal-sensory

phase coherence was selectively attenuated for distractors

versus targets in the ADT group but not in UT group (Figures

5D and 5E, group [T versus UT] 3 session [T1 versus T2] 3

stimulus type [distractor versus target] ANOVA three-way

interaction F[1,29] = 7.02, p = 0.01). Separate two-way session

3 stimulus type ANOVAs in either group confirmed this

results (ADT: F[1,15] = 14.25, p = 0.002, UT: p = 0.71). This

modulation in distractor phase coherence suggested a

training-related change in the interaction between the neural

processing at sensory and frontal cognitive control sites. The

reduced frontal-sensory phase coherence for distractors

post-ADT may be interpreted as reduced distractor encoding

in the functional network that represents task-relevant targets.

This is in line with recent research showing that sensory

cortices encoding task-relevant versus irrelevant (distracting)

information preferentially connect with the fronto-parietal and



Figure 5. Training-Induced Changes in Frontal Theta Modulations

(A) At T2 relative to T1, spectral amplitudes of poststimulus frontal theta bursts were selectively enhanced for task-relevant targets but not distractors in the ADT

group, while this selectivity was absent in the UT group.

(B) Individual differences in (T2-T1) distractor theta modulation in the ADT group positively correlated with their sensory 150–160 ms ERP modulation.

(C) The peak frontal theta source was estimated in the middle frontal gyrus near the inferior frontal junction.

(D) Time-frequency plots of the frontal-sensory phase coherence difference (T2-T1) showed selectively reduced theta phase coherence for distractors in the ADT

group.

(E) Line plots of theta phase coherence modulations shown in (D). Error bars represent SEM. ***p < 0.005, **p < 0.01.
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the default mode networks, respectively (Chadick and Gazza-

ley, 2011).

Overall, these frontal theta modulations revealed that distrac-

tor training-driven neuroplasticity was not simply confined to

sensory cortices, but in addition, emerged in frontal activations

and interregional functional connectivity modulations. Notably,

these frontal modulations occurred in the similarly early time

ranges poststimulus onset as the auditory sensory cortex local-

ized changes.

Transfer of Training Benefits to Other Measures of

Cognitive Control

The benefits of distractor training on other cognitive control abil-

ities in humans were assessed in the auditory domain in three

tests: sustained attention, working memory with secondary

task interference, and working memory span. A repeated-mea-
N

sures ANOVA on test accuracy, with factors of group (ADT

versus UT), session (T1 versus T2), and test type (three cognitive

assessments), showed a significant three-way interaction (F

[2,58] = 4.34, p = 0.02). This interaction was driven by a signifi-

cant group 3 session interaction on the working memory span

test (F[1,29] = 6.12, p = 0.02), but not for the sustained attention

test (p = 0.27) nor the working memory with interference test (p =

0.20). Post-hoc t tests showed that only the ADT group signifi-

cantly improved on working memory span (p = 0.02, d = 1.3,

UT: p = 0.4; Figure 6A). Notably, these working memory span im-

provements suggest far transfer of the benefits of training to

working memory for complex letter/number stimuli from distrac-

tor training on elementary tones.

Furthermore, we found neurobehavioral correlations between

the auditory ERP distractor processing modulation and the
euron 84, 1091–1103, December 3, 2014 ª2014 Elsevier Inc. 1097



Figure 6. Training Transfer to Untrained Cognitive Control

Functions

(A) Trained individuals significantly improved their working memory span for

letter and number stimuli combinations.

(B) In the ADT group, individual improvements in working memory span were

correlated with the change in 150–160 ms distractor ERP neural processing.

(C) Reduction in sustained attention response time variability in the ADT also

yielded a positive neurobehavioral correlation with the 150–160 ms change in

distractor ERP processing. Error bars represent SEM.
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change in working memory span (r(14) =�0.53, p = 0.04); i.e., in-

dividuals with more diminished distractor neural processing

posttraining showed greater working memory span improve-

ment (Figure 6B). Although group mean differences were not

observed for the sustained attention test, neurobehavioral corre-
1098 Neuron 84, 1091–1103, December 3, 2014 ª2014 Elsevier Inc.
lations also emerged for this test. Individuals with more dimin-

ished auditory distractor ERP processing posttraining showed

greater reductions in reaction time variability on the sustained

attention test (r(14) = 0.60, p = 0.01; Figure 6C).

Experiment 2
Effect of Adaptive Target Training on Distractor

Processing

To further explore the specificity of our behavioral, neural and

cognitive transfer results, we enrolled a group of healthy older

human adults in ATT (n = 15). This training was similar to the rein-

forcement training previously applied in older rats (de Villers-Si-

dani et al., 2010). Individuals were presented a sequence of six

tones on every trial, 50% of trials contained a deviant tone of a

different frequency (at any position in the sequence) relative to

the other five same-frequency tones. The training task was to

respond ‘‘yes’’ when the deviant target was detected, or else

respond ‘‘no.’’ Importantly, this training was adaptive to perfor-

mance, such that the deviant target frequency moved closer to

the frequency of the background distractor sequence with accu-

rate performance, and moved further away with poor perfor-

mance. Thus, the ADT and ATT training both included target

versus distractor discriminations, with the sole exception that

the adaptive mechanics were focused either on progressively

more challenging distractors in ADT (Experiment 1) or more chal-

lenging targets in ATT (Experiment 2). After 36 sessions on a

similar training schedule and duration as the ADT group, the

ATT group significantly improved their training task performance

(p = 0.05, d = 0.94).

Changes in octave resolution resulting from ATT were evalu-

ated using the same target amid distractors assessment as

used in Experiment 1 to compare ADT and UT groups. Results

indicated that the ATT group improved significantly from T1 to

T2 (p = 0.02), and the group (ATT versus UT)3 session (T1 versus

T2) interaction was significant (F[1,28] = 4.20, p = 0.05; Fig-

ure S2A). However, a deeper inspection of the target and distrac-

tor responses driving this change in octave resolution revealed

that this effect was driven by the ATT group significantly shifting

their response bias toward more No responses, whereas there

was no significant change in bias in the UT, or ADT group from

Experiment 1 (T1 versus T2 change in total proportion of No

responses; ATT: p = 0.03, UT: p = 0.56, ADT: p = 0.1; also

confirmed by an assessment of T2 versus T1 response criterion

(c); ATT: p = 0.01, UT: p = 0.15, ADT: p = 0.1). As a result of this

bias shift, the ATT group showed a significant reduction in dis-

tractor false-positive results (p = 0.05, less ‘yes’ responses to

distractors, UT p = 0.12, Figure S2B), but also a significant reduc-

tion in target hits (p = 0.02, fewer yes responses to targets, UT p=

0.005, Figure S2C). Overall, the behavioral data showed that

although the ATT group appeared to perform better after training,

this was the result of a change in response bias and not the result

of a true improvement in discrimination. Based on these behav-

ioral findings, we did not expect to find the same signatures of

distractor processing related neural plasticity in the ATT group

that were found in the ADT group in Experiment 1.

The neural data were evaluated in three-way ANOVAs with

between-subject factor of group (ATT versus UT) and within-

subject factors of session (T1 versus T2) and stimulus type
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(distractor versus target). Auditory ERP processing (150–160ms)

showed no differential ATT versus UT group effects (group: p =

0.61, group 3 session: p = 0.25, group 3 session 3 stimulus

type: p = 0.22; Figure S3A). Frontal theta power modulation

(50–150 ms) was also not different between ATT and UT groups

(group: p = 0.35, group 3 session: p = 0.35, group 3 session 3

stimulus type: p = 0.38; Figure S3B) and frontal-sensory theta

phase coherence also showed null interactions (group: p =

0.08, group 3 session: p = 0.99, group 3 session 3 stimulus

type: p = 0.88, Figure S3C). Finally, cognitive transfer measured

in a three-way ANOVA of group (ATT versus UT) 3 session (T1

versus T2) 3 test type (three cognitive assessments) showed

no significant interaction (p = 0.45).

Overall, these comparisons showed that ATT was not associ-

ated with the same neural changes in distractor- versus target-

related neural processing as observed for ADT versus UT

comparisons in Experiment 1. Furthermore, ATT did not result

in significant cognitive transfer even though it was implemented

in a nearly identical training environment and with an equivalent

training schedule/duration as ADT.

Experiment 3
Comparison with Performance in Younger Adults

Younger (6–12 months old, n = 6) rats were assessed on the

‘‘target amid distractor’’ task to assess their octave resolution

relative to older rats. On average, younger rats had approxi-

mately 25% better octave resolution than older rats (p = 0.03).

With adaptive distractor training, older rats surpassed younger

rats to reach target amid distractor resolution 33% finer than

the younger group (p = 0.02) (Figure S4).

A healthy younger human adult cohort (n = 15) was recruited to

perform a single session (T1) behavioral assessment of target

amid distractors octave resolution. Younger adult octave resolu-

tion at T1 was compared to performance of all older adults using

bootstrap statistics with 10,000 iterations of random sampling to

account for unequal sample sizes. At T1, younger adults had

significantly superior octave resolution, by approximately 14%

(p = 0.0004). We also compared young performance at T1 to per-

formance of older adults at T2 in a one-way ANOVA with group

(young versus ADT versus UT versus ATT) as a factor. A signifi-

cant effect of group was observed (F[3,57] = 7.75, p = 0.0002)

and post-hoc t tests showed that only the ADT group exhibited

significantly better octave resolution at T2, which was 31% finer

than the resolution of younger adults (p = 0.006, d = 1.13); this

comparison was not significant for UT (p = 0.16) or ATT (p =

0.42) groups. Thus, with training, only the ADT older adults

surpassed performance of younger adults on the target amid

distractors task (Figure S4).

Single visit young adult performance was also assayed on the

three-test cognitive battery: sustained attention, working mem-

ory span, and working memory with interference. Young perfor-

mance relative to all older adults at T1 was evaluated with an age

(younger versus older) 3 test type (three tests) ANOVA, which

showed a significant interaction (F(2,118) = 4.47, p = 0.01).

Post hoc t tests showed that young and older adults did not differ

on the sustained attention test accuracy (p = 0.49), or on the

working memory span test (p = 0.11). However, young adults

were significantly superior compared to older adults on the
N

working memory with interference test (F[1,59] = 8.01, p =

0.006, d = 0.86); for this test, we also compared young adult per-

formance separately to each of the older adult training groups at

T1 and found significant or near significant differences for each

group (young adult [YA] versus ADT p = 0.04, YA versus ATT

p = 0.006, YA versus UT p = 0.06).

Older adult cognitive performance at T2 did not significantly

differ from young adult performance at T1 (group [YA versus

ADT versus UT versus ATT] 3 test type [three tests] interaction:

p = 0.38). Specifically, for the working memory with interference

test that showed differences at T1, age differences at T2 did not

reach significance (YA versus ADT, p = 0.07; YA versus ATT, p =

0.11; YA versus UT, p = 0.35). Note, that while there was a trend

toward age-normalization for older adults at T2 for the working

memory with interference assessment, the older adult groups

did not have significant T2 versus T1 session differences on this

test (all p>0.1). Ingeneral, these results suggested thatourhealthy

older adult cohortwasa high functioning group, yet ADT improved

octave resolution in older adults beyond that of younger adults.

DISCUSSION

In the present study, we demonstrate that poor signal-to-noise

resolution in aging brains stemming from inappropriately height-

ened neural representations of distractors can be remediated

using a simple reinforcement training approach. Selective neural

plasticity of distractor representations was observed across

aging rats and humans using an adaptive distractor training pro-

cedure whose mechanics specifically challenge the trainee to

make tone discriminations amid progressively more interfering

distractors (i.e., with frequencies approaching the target tone

frequency). In both rats and humans, discrimination of targets

amid distractors was significantly improved via training. Neural

impacts were observed at multiple scales: (1) diminished

neuronal firing to distractors in rat auditory cortex; (2) concomi-

tantly, enhanced spatial and spectral sensitivity of auditory cor-

tex tonotopic maps in rats; (3) diminished early event-related

auditory processing of distractors in humans; and (4) selectively

restrained prefrontal engagement and frontal-sensory connec-

tivity to distractors relative to targets in humans. Additionally,

behavioral impacts of training include transfer of benefits to

improved working memory span at the group level, and reduced

variability in sustained attention at the individual level. Impor-

tantly, the current training approach provided critical insight

that deficient neural processes, here distractor processing, can

be selectively targeted by focusing the adaptive mechanics of

cognitive training to challenge that specific deficient neural pro-

cess and behavior. It thus shows principal evidence for an effec-

tive means of achieving selective neural tuning via an adaptive

cognitive training approach.

Distractibility is a significant problem in aging, and is reflected

in neurophysiological signatures at multiple levels. Aging audi-

tory cortex neurons exhibit weakly inhibited firing patterns, indi-

cating degradation of the GABA-ergic inputs (Krukowski and

Miller, 2001; Bao et al., 2004; de Villers-Sidani et al., 2010).

This in turn leads to more overlap in spatial and spectral input

representations of neuronal assemblies and ‘‘detuned’’ (larger

than normal) RFs. Detuned RFs generate degraded tonotopy
euron 84, 1091–1103, December 3, 2014 ª2014 Elsevier Inc. 1099
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leading to impaired sensory perceptual discriminations (Betts

et al., 2007). Cognitive neuroimaging has shown that insufficient

distractor suppression in sensory cortices is further associated

with abnormally elevated prefrontal-sensory cortical connectiv-

ity for distractors, as well as consequent negative impacts on

cognitive control behavior during attention, working memory

and long-term memory (Gazzaley et al., 2005, 2008; Clapp

et al., 2011; Clapp and Gazzaley, 2012; Wais and Gazzaley,

2014; Chadick et al., 2014).

Here we show that distractor suppression can be ameliorated

at multiple neural levels. Frequency-invariant distracting tones

were effectively suppressed in early (within 50 ms) A1 neuronal

responses of older rats, providing evidence for bottom-up sen-

sory plasticity in the absence of cognitive control in the anesthe-

tized animal. Such pure bottom-up modulations revealed under

anesthesia, i.e., in the absence of influences of top-down goals,

can be rarely investigated in humans, and demonstrate a clear

benefit of our two-species approach. Further, the observed im-

provements in A1 spatial and spectral sensory RFs are likely a

direct outcome of the improved neuronal distractor response

inhibition (Zheng and Knudsen, 1999). Parallel reduction of dis-

tractor processing in humans, primarily localized to superior

temporal gyrus and auditory pitch processing cortex, peaked

at 150–160 ms, and notably correlated with improved target-dis-

tractor discriminations in a dynamic frequency challenge. The

relatively later sensory plasticity observed in humans compared

to rats may be driven by the dynamic distractor stimuli (varying

tone frequencies) used for assessment in humans, and was

most likely enabled by early top-down frontal communication

that updates goal-relevant target versus distractor information.

Indeed, we additionally found evidence for plasticity of prefrontal

processing in early (50–150 ms) frontal theta oscillations in hu-

mans, although we did not have an opportunity to measure fron-

tal signals in anesthetized rats.

In humans, the top-down neural signal evaluations were per-

formed in a target amid distractors assessment version of the

ADT task. This provided a much more challenging assay of

distractibility in contrast to the oddball paradigm in anesthetized

rats that had no top-down engagement. Thus, while it is true that

different neural assessments were performed in the two species,

the matched training across rats and humans afforded the

opportunity to evaluate pure bottom-up changes in the anesthe-

tized animal, and also inform bottom-up and top-down interac-

tions in awake humans. The stimulus-evoked frontal theta sig-

nals recorded in humans were localized to the middle frontal

gyrus. Theta responses were selectively enhanced for targets

but not distractors in trained humans. Furthermore, individuals

who showed greater restraint in early frontal theta responses

to distractors also showed reduced processing of sensory dis-

tractor ERPs with training. Finally, early frontal-sensory theta

phase coherence between the peak frontal theta site and the

peak sensory modulation site was significantly reduced for dis-

tractors relative to targets. As the frontal theta response local-

ized to cognitive control sites in the vicinity of the inferior frontal

junction, a region associated with task relevance (Brass et al.,

2005; Zanto et al., 2011), we speculate that the diminished fron-

tal-sensory coherence exclusively for trained distractors is evi-

dence of reduced distractor representations in this task-relevant
1100 Neuron 84, 1091–1103, December 3, 2014 ª2014 Elsevier Inc.
network (Chadick and Gazzaley, 2011). Overall, these results

show that distractor training leads to selective and refined plas-

ticity of early top-down neural processing of distractions. Of

note, the time scales of these dynamics match those of atten-

tional modulation in sensory cortices (Hillyard and Anllo-Vento,

1998), which have been shown to be vulnerable in aging (Gazza-

ley et al., 2008; Gazzaley, 2013).

Despite the use of elementary tonal stimuli, we found signifi-

cant transfer of training benefits to working memory span of

letters and numbers at the group level. Working memory span

improvements directly correlated with the auditory distractor

processing neural changes. Further, the reduced distractor

ERP processing with training also correlated with reduced

response variability in the sustained attention test, suggesting

a general neural mechanism for these transfer effects. That few

hours of adaptive distractor training can engender some transfer

of benefits aligns with recent understanding that global cognitive

improvements are stimulated by fundamental sensory percep-

tion and discrimination training (Berry et al., 2010; Vinogradov

et al., 2012; Anderson et al., 2013; Wolinsky et al., 2013), which

improves signal-to-noise contrasts at multiple neural scales as

evidenced here.

Overall, we provide multiple scales of neurophysiological

evidence that distractor processing can be selectively improved

by specifically focusing the adaptive mechanics of cognitive

training to challenge this deficient process. We demonstrate

these results relative to an untrained control group. Subse-

quently, we also tested an ATT group that engaged in an identical

training environment and schedule as the ADT group, with the

sole difference in training being the focus of the adaptive me-

chanics, on targets in ATT versus distractors in ADT. This ATT

group did not differ in comparison with the UT group, i.e., did

not show the same neural, behavioral, and cognitive benefits

as the ADT group. These results build on prior findings in older

rats that adaptive target challenge amid fixed distractors does

not improve distractor processing (de Villers-Sidani et al., 2010).

It has been recently postulated that none of the documented

age-related neural changes are truly random degeneration, but

are the result of tightly orchestrated and potentially reversible

adjustments of cortical machinery in response to noisy periph-

eral sensory inputs (de Villers-Sidani and Merzenich, 2011).

The functional and structural state of the aging cortex is noted

to be similar to the state of the immature or noise-exposed cor-

tex, and thus, intensive training regimens that are designed to

specifically drive positive plasticity in neural systems should

reverse the aging neuropathology. Indeed aligned with these hy-

potheses, we observe that with ADT, older adults can achieve

and significantly surpass young adult discrimination perfor-

mance. It is further hypothesized that a hallmark of successful

learning is the widespread and coordinated neural representa-

tion of relevant inputs and outputs, distributed and interacting

across multiple levels of processing and throughout multiple

brain regions (Vinogradov et al., 2012). We provide evidence

for this hypothesized large-scale coordinated neuroplastic pro-

cess. By demonstrating these changes in aging, we further

emphasize that mechanisms of learning-induced plasticity are

active and thriving throughout the adult lifespan (Dahlin et al.,

2008; Anguera et al., 2013). Finally, the complementary evidence
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for neuroplasticity from a parallel animal and human experiment

of reinforcement training highlights the usefulness of such an

approach in the mechanistic evaluation and refined design

of future neurocognitive therapeutic interventions serving

diverse neuropsychiatric populations.

EXPERIMENTAL PROCEDURES

Methods in Rats

All procedureswere approved under University of California San Francisco An-

imal Care Facility protocols. Twenty male aged (26–32 months old) and six

young adult (6–12 months) Brown-Norway rats obtained from the National

Institute on Aging colony were used for this study. Ten aged rats were trained

controls and ten aged rats were untrained controls.

Training

Lightly food-deprived aging rats were rewarded with a food pellet for making a

‘‘go’’ response less than 3 s after the presentation of a target stimulus. The

target stimulus consisted of a train of three tone stimuli containing a target

frequency and two random distractor tones. The intensity and duration of

the distractors were identical to those of the target tone. The frequency of

the distractors was chosen randomly from a range of possible values above

or below the frequency of the target. The task difficulty was increased by

reducing the gap between the target frequency and the range of possible dis-

tractor values according to the animal’s performance. Training started at level

1 on each day. At level 1, the closest a distractor could be from the target was

1.5 octaves. At level 10, the hardest level, the closest a distractor could be from

the target was 0.1 octaves. The minimal distance in frequency between dis-

tractor and target was reduced linearly by 0.14 octaves with each increase

in level. The level was increased after three consecutive correct target identi-

fications and decreased after a response to a nontarget (false-positive result)

or miss as a 3-up 1-down staircase. The tones were presented at 60 dB SPL.

Training was performed in an acoustically transparent operant training cham-

ber contained within a sound-attenuated chamber. Psychometric functions

and target stimulus recognition thresholds were calculated for each training

session by plotting the percentage of go responses as a function of the total

number of target stimuli (hit ratio) and the percentage of false-positive results

as a function of the total number of distractors (false-positive ratio).

Auditory Cortex Mapping

Acute surgeries and A1 mapping were conducted as previously described

(de Villers-Sidani et al., 2007; Supplemental Experimental Procedures). Fre-

quency-intensity RFs were reconstructed by presenting pure tones of 50

frequencies (1–30 kHz; 0.1 octave increments; 25 ms duration; 5 ms ramps)

at eight sound intensities (0–70 dB SPL in 10 dB increments) to the contralat-

eral ear at a rate of one stimulus per second.

To assess cortical responses to deviant oddball tones, 5 minute-long trains

of tone pips consisting of 25 ms duration pips, were presented at five pulses

per second at a sound intensity of 70 dB SPL. Each train had a frequently

occurring frequency (standard) with a probability of occurrence of 90% and

a pseudorandomly distributed oddball frequency presented 10% of the time

with no repetition. The two frequencies in the train had a constant separation

of 1 octave and were chosen so they would be contained within the RF of the

recorded neuron and elicit strong reliable spiking responses. The Supple-

mental Experimental Procedures provide details on electrophysiological

data analyses.

Data Statistics

Statistical significance for trained versus untrained animal data was assessed

using unpaired two-tailed t tests with Bonferroni correction for multiple com-

parisons. Data are presented asmean ± SEM, and effect sizes were calculated

as the Cohen’s d (Cohen, 1988).

Methods in Humans

Participants

Forty-seven healthy older adults (mean age 69 years; 32 females) participated

in the study. All participants gave written informed consent in accordance with

the guidelines set by the Committee on Human Research at the University of

California, San Francisco, and were monetarily compensated for participation.
N

All participants had normal or corrected-to-normal vision, were screened for

normal hearing, and underwent neuropsychological testing to ensure healthy

executive and memory function (Supplemental Experimental Procedures).

Additionally, participants reported no history of stroke, traumatic brain injury,

psychiatric illness, and none used any medication known to affect cognitive

state.

Fifteen healthy young adults (mean age 24 years; eight females) were also

recruited from the University of California, San Francisco community to inves-

tigate single-session behavioral and cognitive performance relative to the

older adult cohort. All young adults had normal or corrected to normal vision,

normal hearing and gave written informed consent in accordance with the

guidelines set by the Committee on Human Research at the University of Cal-

ifornia, San Francisco. Young adults were also monetarily compensated at the

same rate as older adults to participate in the study.

Training and Assessment Procedures

Postneuropsychological testing, participants were randomly assigned to the

ADT group (n = 17) or a no-contact control UT group (n = 15). Subsequently,

an ATT group (n = 15) was also tested. The ADT, ATT, and UT groups did

not differ in age, hearing level or any test in the neuropsychological battery

(p > 0.06 for all comparisons). No groupwas aware of the existence of the other

groups. Physical contact with the research environment and research team

was equivalent in all groups as ADT and ATT group participants performed

the training at home on an Internet platform. Training group compliance and

performance data were monitored remotely on secure online servers. The

UT group controlled for practice effects due to repeat assessments and pla-

cebo effects to some extent as they were informed that the study was inves-

tigating outcomes of repeat testing. One participant in the ADT group was

removed due to noncompliance with the training regimen.

The ADT approach in humans, termed ‘‘Beep Seeker,’’ was similar to the rat

training protocol. Participants heard stimuli at an individually adjusted

comfortable hearing level, through Koss UR29 headphones provided to

them. Stimuli were presented in sets of three tone pips of 0.1 s duration

each and 0.3 s intertone interval, followed by Yes/No response prompts.

Target stimuli occurred at 20% probability and consisted of a target frequency

tone pip and two random distractor tones; the target frequency tone pip could

occur at any position in the triplet tone stimulus sequence. The remaining 80%

stimuli were distractor stimuli containing three random distractor tone pips.

Correct target and distractor stimuli identifications were Yes and No re-

sponses, respectively. All correct responses were rewarded by unveil of a jig-

saw piece covering part of a background scene. To note, the target frequency

for each block was not precued because it was difficult to teach rats such

cueing and we wanted to emphasize exactly equivalent training protocols in

the two species. Therefore, humans, like animals, learned to identify the target

over the first few trials within each block. This learning usually occurred within

the first 20%–30%of trials, and the researcher could easily identify the point at

which the target had been ascertained by the participant from the daily

learning curves; the octave resolution steadily rose to worse values prior to

target identification, but then steadily declined and later plateaued after target

identification (example daily learning curve in one participant, Figure S5). Over-

all, on a trial-by-trial basis, the trainee’s experience was that of a frequency

discrimination task, responding yes when they detected a target in the trial

tone sequence, and if not they responded no. Yet this was not simple discrim-

ination as all three tones presented per trial always had different frequencies;

the task required discriminating a specific target tone frequency amid progres-

sively more challenging distractor frequencies.

The intensity and duration of the distractors were identical to those of the

target tone. The frequency of the distractors was chosen randomly from a

range of possible values above or below the frequency of the target in the

0.2–4 kHz frequency range. The closest a distractor could be from the target

was ±2.0 octaves at the easiest level and ±0.1 octaves at the hardest level.

The task difficulty was adaptively increased using a Zest procedure (King-

Smith et al., 1994) by reducing the gap between the target frequency and

the range of possible distractor values based on trial performance. The Zest

adjusted octave step size varied in each trial to maintain overall 85%

performance.

New training target frequencies between 0.4 and 2 kHz were introduced

after every 120-trial block. Training was accessed at-home via a secure
euron 84, 1091–1103, December 3, 2014 ª2014 Elsevier Inc. 1101
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online interface and participants were encouraged to train in a quiet environ-

ment with headphones supplied to them. Participants completed 36 blocks

of Beep Seeker ADT training over twelve 30-min training sessions in 4–

6 weeks. Training compliance and performance data were received over a

secure cloud data server after each training session. Target stimulus recog-

nition thresholds in each training block were a function of correct target iden-

tifications (hits) and incorrect identification of distractors as targets (false

positives). The distractor from target resolution in octaves for each training

block was calculated as the gap between the target frequency and the range

of possible distractors achieved on average over the last 40 of 120 trials, at

which the learning curve for any given target was consistently observed to

reach an asymptote.

The ATT training in humans presented stimuli similar to the ADT training

and was identical to the training used in older rats by de Villers-Sidani

et al. (2010). Each trial presented stimuli in sets of six tone pips of 0.1 s dura-

tion each, all of the same intensity and 0.3 s intertone interval, followed by

Yes/No response prompts. Participants responded yes if a deviant target fre-

quency was present at any position in the six-tone sequence, else no if all

stimuli were perceived to be of the same frequency. Fifty percent of trials

contained the deviant target (lower target percentages were not imple-

mented as they simply made the task too boring). All correct responses

were rewarded by unveil of a jigsaw piece covering part of a background

scene. In ATT, the frequency of the deviant target tone was chosen randomly

from a range of possible values above or below the frequency of the back-

ground distractors in the 0.2–4 kHz frequency range. The background dis-

tractor frequency was also randomly picked in the 0.2–4 kHz range on every

trial. So on any given trial, the closest a target could be from the distractors

was ±2.0 octaves at the easiest level and ±0.1 octaves at the hardest level.

The task difficulty was adaptively increased using a Zest procedure (King-

Smith et al., 1994), by reducing the gap between the range of deviant target

frequencies and the background distractor fixed frequency based on the trial

performance. The Zest adjusted octave step size varied in each trial to main-

tain overall 85% performance. Similar to ADT, ATT training was performed at

home on secure online servers; 120 trials were presented per session for 36

sessions in a training schedule of 12 three-block sessions of 30 min each per

training day over 4–6 weeks.

The neural and cognitive impacts of training were assessed in the laboratory

in two sessions, T1 and T2. Session T1 occurred within a few days of the neu-

ropsychological assessment, whereas T2 was performed at completion of

training by the ADT and ATT groups or after a 4–6 week no-contact period

for the UT group. Effect sizes were calculated as the Cohen’s d (Cohen,

1988). The cognitive assessments tested (1) sustained attention using the

Test of Variables of Attention, Auditory Version (Greenberg and Waldman,

1993) with a modified interstimulus interval of 1.5 s instead of 2 s; (2) working

memory span using Letter Number Sequencing (Weschler, 2008); and (3)

working memory (at 9 and 18 s) with secondary task interference using Audi-

tory Consonant Trigrams (Stuss et al., 1987).

For the neural assessment at T1, all participants took part in a laboratory

version of the Beep Seeker target amid distractors ADT task while their EEG

was simultaneously recorded. For the T2 neural assessment, auditory stimuli

were yoked to those presented at T1. A nonyoked adaptive behavioral assess-

ment was also performed at T2 to ascertain change in octave resolution. The

neural assessment, electrophysiological recordings, and analyses are detailed

in the Supplemental Experimental Procedures.
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